
autojudge

Vaibhav Sinha, Prateek Kumar, Vishwak Srinivasan

Mar 11, 2021

CONTENTS

1 Setting up and running autojudge 1

2 The internals of the judge app in autojudge 9

Python Module Index 29

Index 31

i

ii

CHAPTER

ONE

SETTING UP AND RUNNING AUTOJUDGE

1.1 The autojudge “Install and Use” Reference

This section of the documentation will describe how to install the tool in your system / server and subsequently play
around with it - basically how to use autojudge.

1.1.1 Installing autojudge

autojudge is a tool developed for automating evaluation for code submission in coding contests and in assigments
at college. For your convenience, we have split this usage manual into 3 phases.

Phase 1 : Get autojudge and set up your environment

Phase 1a: Getting autojudge

autojudge is available on GitHub, and you can download a version of your choice from the releases page. We
prefer that you use the latest version.

Extract the compressed files and you now have autojudge ready to use.

If you are a fan of master, then clone the repository, either using git or by downloading from GitHub from here.

Phase 1b: Setting up your environment

The evaluation of submissions are conducted on a Docker image that is built while initializing the application. Please
install Docker using the instructions provided on their installation page.

If you are very conservative about populating your default environment with random Python packages, create a virtual
environment for installing some new packages either using virtualenv or conda-env.

Install the requirements specified in requirements.txt. Don’t forget to activate your environment if you have
one.

If you going to deploy autojudge, please install PostgreSQL using the instructions provided on their installation
page.

1

https://github.com/vbsinha/autojudge/releases
https://github.com/vbsinha/autojudge
https://docs.docker.com/install/linux/docker-ce/ubuntu
../../../requirements.txt
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/

autojudge

Phase 2 : Run autojudge

Activate your environment.

Create and apply database migrations in Django with the following commands:

python manage.py makemigrations
python manage.py migrate

There are two ways of using autojudge.

Development

To run autojudge locally:

python manage.py runserver

Go to localhost:8000 in your favourite browser. Keep yourself connected to internet for full functionality as
certain frontend support such as JavaScript scripts are pulled from the internet.

The program submission_watcher_saver.py scores the submissions serially in the chronological order of
submissions. It can be started anytime after the server has started, but it is preferred that the program be kept running
in parallel with the server. Run it using:

python submission_watcher_saver.py

Production

The procedure to deploy autojudge is different from running locally. Below are a series of steps that will help you
deploy autojudge.

Set the environmental variable AUTOJUDGE_SECRET_KEY to a random string, which should not be exposed to
anyone. Think of it to be a private key.

Now modify a few more settings to settings_production.py. The first is to setup the database. We
suggest using a PostgreSQL database. This modification can be done by adding the below dictionary to
settings_production.py. Modify the values NAME, USER, PASSWORD, HOST and PORT accordingly.

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': 'mydatabase', # Sample
'USER': 'mydatabaseuser', # Sample
'PASSWORD': 'mypassword', # Sample
'HOST': '127.0.0.1', # Sample
'PORT': '5432', # Sample

}
}

Next we setup the STATIC_ROOT path, the location where you would like the static files to be generated. This has to
be set in settings_production.py.

To generate the static files, run:

python manage.py collectstatic --settings=autojudge.settings_production.py

2 Chapter 1. Setting up and running autojudge

../../../submission_watcher_saver.py
../../../autojudge/settings_production.py
../../../autojudge/settings_production.py
../../../autojudge/settings_production.py

autojudge

The static files are generated in the path specified by STATIC_ROOT previously.

Now host the static files on a server and configure the URL in STATIC_URL in settings_production.py.
If you have hosted the generated static files at https://static.autojudge.com, then change the STATIC_URL to https:
//static.autojudge.com/ (note the trailing slash is required).

You could optionally setup a cache server. Instructions to do this are specified here.

Configure the security settings in settings_production.py (leave it to the default values if you will be hosting
on https).

To configure the Apache server using WSGI, follow the instructions here.

And finally, set environment variable DJANGO_SETTINGS_MODULE to autojudge.settings_production
as opposed to autojudge.settings which is present by default.

1.1.2 User Manual for autojudge

Some important abstractions / terminology used in autojudge

Note: Please make note of the terms in bold

The judge works on graph between contests and users. A contest consists of a set of problems. A user is, well, a
user - with different roles.

A user can be either a poster, participant or neither. A user is associated with the contest with one and only one role
- either a poster, participant or neither.

The user who creates a new contest becomes the poster for the contest by default. This user can add more posters
to help coordinate the contest (perhaps by setting new problems, verifying and commenting on submissions, and so
on).

While creating a new contest, the first poster has an option to either allow select participants, or to leave it open for
all. The former kind of a contest is a private contest, and the latter kind of a contest is a public contest (for obvious
reasons). No poster is allowed to take part in a contest as a participant i.e., he/she cannot submit solutions.

If the contest is public, every user is either a poster or a participant. If the contest is private, a user can either be a
poster, a participant or neither - in which case, he/she will not be permitted to participant in the contest.

Maybe a short example will help you understand if something is confusing. . . .

Example:

Take the case of a course assignment with programming questions. These programming questions could compose
a contest, where each question is a problem. The instructor and the TAs can be thought of as the posters, while
registered students for the course would be participants. Students not registered for the course will not be able to
participate in this contest - as you would expect.

1.1. The autojudge “Install and Use” Reference 3

../../../autojudge/settings_production.py
https://static.autojudge.com
https://static.autojudge.com/
https://static.autojudge.com/
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-CACHES
../../../autojudge/settings_production.py
https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/

autojudge

Hands-on with autojudge

Creating your account / Logging in

You need to be logged in to use autojudge. On the home page, click LOG IN (see the top right corner in the image
below)

If this is being used at an institution, please make sure you log in with your institutional account. Currently, we support
Google OAuth logins.

Creating a contest

Once you are logged in, follow the steps below to create a new contest.

1. Click the New Contest button on the dashboard (see beneath the blue header in the image below)

2. Fill out the form for creating a new contest.

Note: The contest name distinguishes contests, hence every contest must have a unique name. Failure to
provide a unique name will throw an interactive error.

Note: Penalty is a value between 0 and 1 and specifies the per day penalty on submissions made after soft end
date. For example: a contest having 0.1 penalty for example, would give 90% of the actually scored points by a
submission if it is made within 24 hours after soft end date but before hard end date.

Note: It is advised that linter scoring be disabled unless all code submissions are made in Python.

Note: Enable poster scoring if you would like the posters to give points in addition to those given by the judge.

You should be able to see the newly created contest on your dashboard. No one else would be able to see this new
contest on their dashboard until the start time of this contest.

Click on the contest in the link on the dashboard to edit it.

4 Chapter 1. Setting up and running autojudge

autojudge

To add more posters to the contest, click on SEE POSTERS. You can add one or more posters by adding their emails
in a comma separated list after clicking on ADD POSTER. The new poster(s) would now be able to see this contest
on their dashboard (even before the start time). They can also edit the contest. To delete posters, click on the red bin
button adjacent to each poster’s email ID.

In the case of a private contest, the poster(s) can also see a SEE PARTICIPANTS button. Clicking this will lead
them to a page where they can edit the Participant list in the same manner as the poster list.

Note: Trying to add a user both as a participant and a poster will not be permitted.

Any of the posters can update the dates of the contest by clicking on UPDATE DATES. Please update the dates before
they pass, and attempting to do so will throw an interactive error.

Note that a participant cannot add or delete other participants or posters. Also he/she cannot update the dates.

A poster can also delete a contest using the button at the bottom of the contest page.

Managing problems in a contest

A contest consists of problems. Problems can be added, edited or deleted by the posters of the contest.

A problem can be added to a contest only before the start time of the contest. To add a problem to the contest, follow
the steps below:

1. Click ADD PROBLEM from the contest’s homepage.

2. Fill the form that follows. Short descriptions for fields in the form are provided.

Note: The problem code distinctly identifies a problem, hence every problem must have a unique name. Failure
to provide a unique name will throw an interactive error.

Note: In case the compilation script and test script are left empty, the default ones are used. The default scripts
can be downloaded from the links just below the Browse button for each of them.

1.1. The autojudge “Install and Use” Reference 5

autojudge

3. After submission, you can add or delete test cases on the problem page. There are two kinds of test cases -
public test cases and private test cases. Public test cases would be visible to the participants while private
test cases won’t be visible.

Note: Test case addition and deletion will be allowed only till the start of the contest.

Posters can edit or delete an existing problem in the contest using the 2 icons on the top-right of the problem page (see
to the right of the problem title).

Note: Deletion of a problem is only allowed until the contest begins.

Submitting and checking submissions: Participant end

A participant can make submission for a problem from the problem page. Select the language and upload the submis-
sion file.

To check your previous submissions, and the judge’s score for your submissions, click SEE MY PREVIOUS
SUBMISSIONS at the bottom of the problem page.

If you want a detailed verdict of the judge for a submission, click on that submission. You can see the verdict of the
judge on individual test cases concisely below or in detail by clicking on a test case. You can also download your
submission from here as well.

Once the contest begins and participants start submitting, the leaderboard is initialized and can be seen on the contest
page. The leaderboard lists the participants in the decreasing order of sum of scores in individual problems in the
contest.

Please note that the max score seen on the problem page is the maximum score possible per test case. For example, if
there are 5 test cases and max score is 10 points, then a participant can score at most 50 points for that problem by the
judge (i.e., notwithstanding the linter score and/or the poster score).

6 Chapter 1. Setting up and running autojudge

autojudge

Managing submissions from the poster’s side

Posters can see all the submissions pertaining to a problem in the problem page by clicking SEE ALL
SUBMISSIONS at the bottom of the page.

Submissions made by all the participants for a given problem would be available here. Click on any submission to
open the submission page. The layout is the same as that seen by the participants.

In case poster scoring is enabled for the contest, the poster can give a score from the submission page by clicking on
UPDATE POSTER SCORE on the top right adjacent to the download icon. Poster score can be any integer.

The poster can also view the submission file from the submission page by downloading it via the DOWNLOAD button
on the top right.

Commenting

Posters and participants can also comment. A comment by a participant to a problem can be viewed by all posters but
not by any other participants - similar to private comments on Google Classroom.

To see old comments or create a new one, click on SEE ALL SUBMISSIONS on the problem page.

Miscellaneous

A poster can download a CSV file containing the best scores of all participants in a contest by clicking on DOWNLOAD
SCORES from the contest page.

1.1. The autojudge “Install and Use” Reference 7

autojudge

8 Chapter 1. Setting up and running autojudge

CHAPTER

TWO

THE INTERNALS OF THE JUDGE APP IN AUTOJUDGE

2.1 The autojudge API Reference

This part of the documentation specifies routines and their description used in this project.

2.1.1 Models and Database Schema

Base Models

Contest

class judge.models.Contest(*args, **kwargs)
Model for Contest.

name
Contest name

start_datetime
Start Date and Time for Contest

soft_end_datetime
“Soft” End Date and Time for Contest

hard_end_datetime
“Hard” End Date and Time for Contest

penalty
Penalty for late-submission

public
Is the contest public?

enable_linter_score
Enable linter scoring

enable_poster_score
Enable poster scoring

9

autojudge

Problem

class judge.models.Problem(*args, **kwargs)
Model for a Problem.

code
Problem code

contest
Foreign key to contest for the problem

name
Problem name

statement
Problem statement

input_format
Problem input format

output_format
Problem output format

difficulty
Problem difficulty

time_limit
Problem time limit

memory_limit
Problem memory limit

file_exts
Accepted file extensions for submissions to problem

starting_code
Problem starting code

max_score
Maximum score for a test case for the problem

compilation_script
Problem compilation script

test_script
Problem test script

Submission

class judge.models.Submission(*args, **kwargs)
Model for a Submission.

problem
Foreign key to problem for which this is a submission

participant
Foreign key to person who submitted the solution

file_type
File type of submission

10 Chapter 2. The internals of the judge app in autojudge

autojudge

submission_file
Submission file

timestamp
Timestamp of submission

judge_score
Judge score

poster_score
Poster score

linter_score
Linter score

final_score
Final score

TestCase

class judge.models.TestCase(*args, **kwargs)
Model for TestCase. Maintains testcases and mapping between TestCase and Problem.

problem
Foreign key to problem for which this is a test case

public
Determines if the test case is a public test case or a private test case

inputfile
Input file for the test case

outputfile
Output file for the test case

Person

class judge.models.Person(*args, **kwargs)
Model for Person.

email
Email ID of the Person

rank
Rank of the Person

Comment

class judge.models.Comment(*args, **kwargs)
Model for Comment.

problem
Foreign key to problem relating to the comment

person
Foreign key to person

2.1. The autojudge API Reference 11

autojudge

commenter
Foreign key to person who commented

timestamp
Timestamp of the comment

comment
Content of the comment

Derived Models

ContestPerson

class judge.models.ContestPerson(*args, **kwargs)
Model for ContestPerson. This maps how (either as a Participant or Poster) persons have access to
the contests.

contest
Foreign key to contest in which this person is taking part

person
Foreign key to the actual person

role
Determines if Person is a Poster or a Participant

SubmissionTestCase

class judge.models.SubmissionTestCase(*args, **kwargs)
Model for SubmissionTestCase. Maintains mapping between TestCase and Submission.

submission
Foreign key to submission

testcase
Foreign key to test case

verdict
Verdict by the judge

memory_taken
Virtual memory consumed by the submission

time_taken
Time taken by the submission

message
Message placeholder, used for erroneous submissions

12 Chapter 2. The internals of the judge app in autojudge

autojudge

PersonProblemFinalScore

class judge.models.PersonProblemFinalScore(*args, **kwargs)
Model to store the final score assigned to a person for a problem.

problem
Foreign key to problem for which the score is saved

person
Foreign key to person whose submission’s score is saved

score
Final score saved

2.1.2 Forms and input pre-processing

Creation forms

NewContestForm

class judge.forms.NewContestForm(data=None, files=None, auto_id='id_%s', pre-
fix=None, initial=None, error_class=<class
'django.forms.utils.ErrorList'>, la-
bel_suffix=None, empty_permitted=False,
field_order=None, use_required_attribute=None,
renderer=None)

Form for creating a new Contest.

contest_name
Contest Name

contest_start
Contest Start Timestamp

contest_soft_end
Contest Soft End Timestamp

contest_hard_end
Contest Hard End Timestamp

penalty
Contest Penalty factor

is_public
Contest is_public property

enable_linter_score
Contest enable_linter_score property

enable_poster_score
Contest enable_poster_score property

clean()
Hook for doing any extra form-wide cleaning after Field.clean() has been called on every field.
Any ValidationError raised by this method will not be associated with a particular field; it will
have a special-case association with the field named ‘__all__’.

2.1. The autojudge API Reference 13

autojudge

NewProblemForm

class judge.forms.NewProblemForm(data=None, files=None, auto_id='id_%s', pre-
fix=None, initial=None, error_class=<class
'django.forms.utils.ErrorList'>, la-
bel_suffix=None, empty_permitted=False,
field_order=None, use_required_attribute=None,
renderer=None)

Form for adding a new Problem.

code
Problem Code Field

name
Problem Name Field

statement
Problem Statement Field

input_format
Problem Input Format Field

output_format
Problem Output Format Field

difficulty
Problem Difficulty Field

time_limit
Problem Time limit

memory_limit
Problem Memory limit

file_exts
Problem File Extensions

starting_code
Problem Starting code

max_score
Problem Max Score

compilation_script
Problem Compilation Script

test_script
Problem Test Script

NewSubmissionForm

class judge.forms.NewSubmissionForm(data=None, files=None,
auto_id='id_%s', prefix=None, ini-
tial=None, error_class=<class
'django.forms.utils.ErrorList'>,
label_suffix=None,
empty_permitted=False, field_order=None,
use_required_attribute=None, ren-
derer=None)

Form to create a new Submission.

14 Chapter 2. The internals of the judge app in autojudge

autojudge

file_type
Choices of file type

submission_file
Submission File

NewCommentForm

class judge.forms.NewCommentForm(data=None, files=None, auto_id='id_%s', pre-
fix=None, initial=None, error_class=<class
'django.forms.utils.ErrorList'>, la-
bel_suffix=None, empty_permitted=False,
field_order=None, use_required_attribute=None,
renderer=None)

Form to add a new comment

participant_email
Email of participant

comment
Comment content

Extension forms

AddPersonToContestForm

class judge.forms.AddPersonToContestForm(data=None, files=None,
auto_id='id_%s', prefix=None,
initial=None, error_class=<class
'django.forms.utils.ErrorList'>,
label_suffix=None,
empty_permitted=False,
field_order=None,
use_required_attribute=None, ren-
derer=None)

Form to add a Person to a Contest.

emails
Email ID of the person

AddTestCaseForm

class judge.forms.AddTestCaseForm(data=None, files=None, auto_id='id_%s',
prefix=None, initial=None, error_class=<class
'django.forms.utils.ErrorList'>,
label_suffix=None,
empty_permitted=False, field_order=None,
use_required_attribute=None, renderer=None)

Form to create a new TestCase

test_type
TestCase Type

input_file
TestCase Input

2.1. The autojudge API Reference 15

autojudge

output_file
TestCase Output

AddPosterScoreForm

class judge.forms.AddPosterScoreForm(data=None, files=None,
auto_id='id_%s', prefix=None, ini-
tial=None, error_class=<class
'django.forms.utils.ErrorList'>,
label_suffix=None,
empty_permitted=False, field_order=None,
use_required_attribute=None, ren-
derer=None)

Form to add poster score for a submission

score
Score field

Updation forms

UpdateContestForm

class judge.forms.UpdateContestForm(data=None, files=None,
auto_id='id_%s', prefix=None, ini-
tial=None, error_class=<class
'django.forms.utils.ErrorList'>,
label_suffix=None,
empty_permitted=False, field_order=None,
use_required_attribute=None, ren-
derer=None)

Form to update the timeline of the Contest

contest_start
Contest Start Timestamp

contest_soft_end
Contest Soft End Timestamp

contest_hard_end
Contest Hard End Timestamp

clean()
Hook for doing any extra form-wide cleaning after Field.clean() has been called on every field.
Any ValidationError raised by this method will not be associated with a particular field; it will
have a special-case association with the field named ‘__all__’.

16 Chapter 2. The internals of the judge app in autojudge

autojudge

EditProblemForm

class judge.forms.EditProblemForm(data=None, files=None, auto_id='id_%s',
prefix=None, initial=None, error_class=<class
'django.forms.utils.ErrorList'>,
label_suffix=None,
empty_permitted=False, field_order=None,
use_required_attribute=None, renderer=None)

Form for editing an existing problem.

name
Problem Name Field

statement
Problem Statement Field

input_format
Problem Input Format Field

output_format
Problem Output Format Field

difficulty
Problem Difficulty Field

Deletion forms

DeletePersonFromContestForm

class judge.forms.DeletePersonFromContestForm(data=None, files=None,
auto_id='id_%s', pre-
fix=None, initial=None,
error_class=<class
'django.forms.utils.ErrorList'>,
label_suffix=None,
empty_permitted=False,
field_order=None,
use_required_attribute=None,
renderer=None)

Form to remove a Person from a Contest.

email
Email ID of the person

2.1.3 Views and page rendering

Default Views

judge.views.index(request)
Renders the index page.

Parameters request (HttpRequest) – the request object used

judge.views.handler404(request, *args)
Renders 404 page.

2.1. The autojudge API Reference 17

autojudge

Parameters request (HttpRequest) – the request object used

judge.views.handler500(request, *args)
Renders 500 page.

Parameters request (HttpRequest) – the request object used

Creation Views

judge.views.new_contest(request)
Renders view for the page to create a new contest.

Parameters request (HttpRequest) – the request object used

judge.views.new_problem(request, contest_id)
Renders view for the page to create a new problem in a contest.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

Modification Views

judge.views.edit_problem(request, problem_id)
Renders view for the page to edit selected fields of a pre-existing problem.

Parameters

• request (HttpRequest) – the request object used

• problem_id (str) – the problem ID

judge.views.add_person(request, contest_id, role)
Function to render the page for adding a person - participant or poster to a contest.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

• role (bool) – True for Poster, False for Participant

judge.views.add_poster(request, contest_id)
Renders the page for adding a poster. Dispatches to add_person() with role set to True.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

judge.views.add_participant(request, contest_id)
Renders the page for adding a participant. Dispatches to add_person()with role set to False.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

18 Chapter 2. The internals of the judge app in autojudge

autojudge

Detail Views

judge.views.contest_detail(request, contest_id)
Renders the contest preview page after the contest has been created.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

judge.views.problem_detail(request, problem_id)
Renders the problem preview page after the problem has been created. This preview will be changed
based on the role of the user (poster or participant).

Parameters

• request (HttpRequest) – the request object used

• problem_id (str) – the problem ID

judge.views.submission_detail(request, submission_id)
Renders the page where a detailed breakdown with respect to judge’s evaluation, additional scores,
error messages displayed and so on.

Parameters

• request (HttpRequest) – the request object used

• submission_id (str) – the submission ID

judge.views.get_people(request, contest_id, role)
Function to render the page for viewing participants and posters for a contest based on role.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

• role (bool) – True for Poster, False for Participant

judge.views.get_posters(request, contest_id)
Renders the page for posters of a contest. Dispatches to get_people() with role set to True.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

judge.views.get_participants(request, contest_id)
Renders the page for posters of a contest. Dispatches to get_people() with role set to False.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

judge.views.problem_submissions(request, problem_id)
Renders the page where all submissions to a given problem can be seen. For posters, this renders
a set of tables for each participant. For participants, this renders a table with the scores of their
submissions only.

Parameters

2.1. The autojudge API Reference 19

autojudge

• request (HttpRequest) – the request object used

• problem_id (str) – the problem ID

Deletion Views

judge.views.delete_contest(request, contest_id)
Function to provide the option to delete a contest.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

judge.views.delete_problem(request, problem_id)
Function to provide the option to delete a problem.

Parameters

• request (HttpRequest) – the request object used

• problem_id (str) – the problem ID

judge.views.delete_testcase(request, problem_id, testcase_id)
Function to provide the option to delete a test-case of a particular problem.

Parameters

• request (HttpRequest) – the request object used

• problem_id (str) – the problem ID

• testcase_id (str) – the testcase ID

Downloading Views

judge.views.contest_scores_csv(request, contest_id)
Function to provide the facility to download a CSV of scores of participants in a contest at a given
point in time.

Parameters

• request (HttpRequest) – the request object used

• contest_id (int) – the contest ID

judge.views.problem_starting_code(request, problem_id)
Function to provide the facility to download the starting code for a problem.

Parameters

• request (HttpRequest) – the request object used

• problem_id (str) – the problem ID

judge.views.problem_compilation_script(request, problem_id)
Function to provide the facility to download the compilation script for a problem after creating the
problem.

Parameters

• request (HttpRequest) – the request object used

• problem_id (str) – the problem ID

20 Chapter 2. The internals of the judge app in autojudge

autojudge

judge.views.problem_test_script(request, problem_id)
Function to provide the facility to download the testing script for a problem after creating the prob-
lem.

Parameters

• request (HttpRequest) – the request object used

• problem_id (str) – the problem ID

judge.views.problem_default_script(request, script_name)
Function to provide the facility to download the default compilation or test script.

Parameters

• request (HttpRequest) – the request object used

• script_name (str) – name of the script - one of compilation_script or
test_script

judge.views.submission_download(request, submission_id)
Function to provide the facility to download a given submission.

Parameters

• request (HttpRequest) – the request object used

• submission_id (str) – the submission ID

2.1.4 Handlers and database management

Process Functions

judge.handler.process_contest(contest_name, contest_start, contest_soft_end,
contest_hard_end, penalty, is_public, en-
able_linter_score, enable_poster_score)

Function to process a new Contest.

Parameters

• contest_name (str) – Name of the contest

• contest_start (datetime) – A datetime object representing the beginning of
the contest

• contest_soft_end (datetime) – A datetime object representing the soft
deadline of the contest

• contest_hard_end (datetime) – A datetime object representing the hard
deadline of the contest

• penalty (float) – A penalty score for late submissions

• is_public (bool) – Field to indicate if the contest is public (or private)

• enable_linter_score (bool) – Field to indicate if linter scoring is enabled
in the contest

• enable_poster_score (bool) – Field to indicate if poster scoring is enabled
in the contest

Return type Tuple[bool, Union[ValidationError, str]]

2.1. The autojudge API Reference 21

autojudge

Returns A 2-tuple - 1st element indicating whether the processing has succeeded, and 2nd
element providing a ValidationError if processing is unsuccessful.

judge.handler.process_problem(contest_id, **kwargs)
Function to process a new Problem.

Parameters contest_id (int) – Contest ID to which the problem belongs

**kwargs includes the following keyword arguments, which are directly passed to the construct a
Problem object.

Parameters

• code (str) – Problem code

• name (str) – Problem name

• statement (Optional[InMemoryUploadedFile]) – Problem statement

• input_format – Problem input format

• output_format – Problem output format

• difficulty – Problem difficulty

• time_limit – Problem execution time limit

• memory_limit – Problem virtual memory limit

• file_exts – Accepted file format for submissions

• starting_code – Starting code for the problem

• max_score – Maximum judge score per test case for the problem

• compilation_script – Compilation script for the submissions

• test_script – Test script for the submissions

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the processing has succeeded, and 2nd
element providing a ValidationError if processing is unsuccessful.

judge.handler.process_submission(problem_id, participant_id, file_type, submis-
sion_file, timestamp)

Function to process a new Submission for a problem by a participant.

Parameters

• problem_id (str) – Problem ID for the problem corresponding to the submis-
sion

• participant_id (str) – Participant ID

• file_type (str) – Submission file type

• submission_file (InMemoryUploadedFile) – Submission file

• timestamp (str) – Time at submission

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the processing has succeeded, and 2nd
element providing a ValidationError if processing is unsuccessful.

22 Chapter 2. The internals of the judge app in autojudge

autojudge

judge.handler.process_testcase(problem_id, test_type, input_file, output_file)
Function to process a new TestCase for a problem.

Warning: This function does not rescore all the submissions and so score will not change in
response to the new testcase. Do not call this function once the contest has started, it will lead to
erroneous scores.

Parameters

• problem_id (str) – Problem ID to which the testcase is added.

• test_type (str) – Type of testcase - one of public, private.

• input_file (InMemoryUploadedFile) – Input file for the testcase.

• output_file (InMemoryUploadedFile) – Output file for the testcase.

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the processing has succeeded, and 2nd
element providing a ValidationError if processing is unsuccessful.

judge.handler.process_person(email, rank=0)
Function to process a new Person.

Parameters

• email (str) – Email of the person

• rank (int) – Rank of the person (defaults to 0).

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the processing has succeeded, and 2nd
element providing a ValidationError if processing is unsuccessful.

judge.handler.process_comment(problem_id, person_id, commenter_id, timestamp,
comment)

Function to process a new Comment on the problem.

Parameters

• problem_id (str) – Problem ID

• person_id (str) – Person ID

• commenter_id (str) – Commenter (another person) ID

• timestamp (datetime) – Date and Time of comment

• comment (str) – Comment content

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the processing has succeeded, and 2nd
element providing a ValidationError if processing is unsuccessful.

2.1. The autojudge API Reference 23

autojudge

Addition Functions

judge.handler.add_person_to_contest(person_id, contest_id, permission)
Function to relate a person to a contest with permissions.

Parameters

• person_id (str) – Person ID

• contest_id (int) – Contest ID

• permission (bool) – If True, then poster, if False, then participant

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the addition has succeeded, and 2nd
element providing a ValidationError if addition is unsuccessful.

judge.handler.add_persons_to_contest(persons, contest_id, permission)
Function to relate a list of persons and contest with permissions. This function would create records
for all the persons who are not present in the database irrespective of whether anyone has conflict or
not.

Parameters

• persons (List[str]) – List of person IDs

• contest_id (int) – Contest ID

• permission (bool) – If True, then poster, if False, then participant

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the relation creation has succeeded,
and 2nd element providing a ValidationError if relation creation is unsuccessful.

Update Functions

judge.handler.update_problem(code, name, statement, input_format, output_format,
difficulty)

Function to update selected fields in a Problem after creation. The fields that can be modified are
name, statement, input_format, output_format and difficulty.

Parameters

• code (str) – Problem ID

• name (str) – Modified problem name

• statement (str) – Modified problem statement

• input_format (str) – Modified problem input format

• output_format (str) – Modified problem output format

• difficulty (str) – Modified problem difficulty

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the update has succeeded, and 2nd
element providing a ValidationError if update is unsuccessful.

judge.handler.update_poster_score(submission_id, new_score)
Function to update the poster score for a submission. Leaderboard is updated if the total score for
the person-problem pair has changed.

24 Chapter 2. The internals of the judge app in autojudge

autojudge

Parameters

• submission_id (str) – Submission ID of the submission

• new_score (int) – New score to be assigned

Returns A 2-tuple - 1st element indicating whether the update has succeeded, and 2nd
element providing a ValidationError if update is unsuccessful.

judge.handler.update_leaderboard(contest_id, person_id)
Function to update the leaderboard for a person-contest pair given their IDs.

Note: Only call this function when some submission for some problem of the contest
has scored more than its previous submission. Remember to call this function whenever
PersonProblemFinalScore is updated.

Parameters

• contest_id (int) – Contest ID

• person_id (str) – Person ID

Return type bool

Returns If update is successful, then True. If unsuccessful, then False.

Getter Functions

judge.handler.get_personcontest_permission(person_id, contest_id)
Function to give the relation between a Person and a Contest.

Parameters

• person_id (Optional[str]) – Person ID

• contest_id (int) – Contest ID

Return type Optional[bool]

Returns If participant, then False, if poster, then True, if neither, then None

judge.handler.get_personproblem_permission(person_id, problem_id)
Function to give the relation between a Person and a Contest. This dispatches to
get_personcontest_permission() with relevant arguments.

Parameters

• person_id (Optional[str]) – Person ID

• problem_id (str) – Problem ID

Return type Optional[bool]

Returns If participant, then False, if poster, then True, if neither, then None

judge.handler.get_posters(contest_id)
Function to return the list of the posters for a Contest.

Parameters contest_id (int) – Contest ID

Return type Tuple[bool, Union[ValidationError, List[str]]]

2.1. The autojudge API Reference 25

autojudge

Returns A 2-tuple - 1st element indicating whether the retrieval has succeeded. If
successful, a list of IDs are present in the 2nd element. If unsuccessful, a
ValidationError is additionally returned.

judge.handler.get_participants(contest_id)
Function to return the list of the participants for a Contest.

Parameters contest_id (int) – Contest ID

Return type Tuple[bool, Union[ValidationError, List[str]]]

Returns A 2-tuple - 1st element indicating whether the retrieval has succeeded. If suc-
cessful, a list of IDs are present in the 2nd element. The list is empty if the contest is
public. If unsuccessful, a ValidationError is additionally returned.

judge.handler.get_personcontest_score(person_id, contest_id)
Function to get the final score, which is the sum of individual final scores of all problems in a contest
for a particular person.

Parameters

• person_id (str) – Person ID

• contest_id (int) – Contest ID

Return type Tuple[bool, Union[float, ValidationError]]

Returns A 2-tuple - 1st element indicating whether the retrieval has succeeded. If
successful, the final score is present in the 2nd element. If unsuccesful, a
ValidationError is additionally returned.

judge.handler.get_submission_status(submission_id)
Function to get the current status of the submission given its submission ID.

Parameters submission_d – Submission ID

Returns A 2-tuple - 1st element indicating whether the retrieval has succeeded. If success-
ful, a tuple consisting of a dictionary and a smaller tuple. The key for the dictionary
is the testcase ID, and value is another smaller tuple consisting of the verdict, time
taken, memory consumed, flag to indicate if the testcase was public or private and
message after checking. The smaller tuple consists of the score given by the judge,
poster (if applicable), and linter (if applicable), as well as the final score, timestamp of
submission and the file type of submission. If unsuccessful, a ValidationError
is additionally returned.

judge.handler.get_submissions(problem_id, person_id)
Function to retrieve all submissions made by everyone or a specific person for this problem.

Parameters

• problem_id (str) – Problem ID

• person_id (Optional[str]) – Person ID

Return type Tuple[bool, Union[Dict[str, List[Any]], ValidationError]]

Returns A 2-tuple - 1st element indicating whether the retrieval has succeeded. If success-
ful, and person_id is None, then the list of submissions pertaining to each person
is placed in a dictionary, and if person_id is provided, then the list of submissions
pertaining to the specific person is placed in a dictionary and returned. If unsuccessful,
then a ValidationError is additionally returned.

judge.handler.get_leaderboard(contest_id)
Function to returns the current leaderboard for a contest given its contest ID.

26 Chapter 2. The internals of the judge app in autojudge

autojudge

Parameters contest_id (int) – Contest ID

Return type Tuple[bool, Union[str, List[List[Union[str, float]]]]]

Returns A 2-tuple - 1st element indicating whether leaderboard has been initialized or
not. If initialized, a list of 2-length lists is returned ordered by decreasing scores. The
first element is the rank, and the second element is the score. If uninitialized, a suitable
message is provided

judge.handler.get_comments(problem_id, person_id)
Function to get the private comments on the problem for the person.

Parameters

• problem_id (str) – Problem ID

• person_id (str) – Person ID

Return type List[Tuple[Any, Any, Any]]

Returns List of 3-tuple of comments - the person who commented, the timestamp and the
comment content, sorted in chronological order.

judge.handler.get_csv(contest_id)
Function to get the CSV (in string form) of the current scores of all participants in a contest given
its contest ID.

Parameters contest_id (int) – Contest ID

Return type Tuple[bool, Union[ValidationError, StringIO]]

Returns A 2-tuple - 1st element indicating whether the retrieval has succeeded, and
2nd element providing a ValidationError if processing is unsuccessful or a
StringIO object if successful.

Deletion Functions

judge.handler.delete_contest(contest_id)
Function to delete a Contest given its contest ID. This will cascade delete in all the tables that have
contest_id as a foreign key. It calls delete_problem() for each problem in the contest.

Parameters contest_id (int) – the contest ID

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the deletion has succeeded, and 2nd
element providing a ValidationError if deletion is unsuccessful.

judge.handler.delete_problem(problem_id)
Function to delete a Problem given its problem ID. This will cascade delete in all the tables that
have problem_id as a foreign key. It will also delete all the submissions, testcases and related
directories corresponding to the problem.

Parameters problem_id (str) – the problem ID

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the deletion has succeeded, and 2nd
element providing a ValidationError if deletion is unsuccessful.

judge.handler.delete_testcase(testcase_id)
Function to delete a TestCase given its testcase ID. This will cascade delete in all the tables where
this testcase appears.

2.1. The autojudge API Reference 27

autojudge

Warning: This function does not rescore all the submissions and so score will not change in
response to the deleted testcase. Do not call this function once the contest has started, it will lead
to erroneous scores.

Parameters testcase_id (str) – the testcase ID

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the deletion has succeeded, and 2nd
element providing a ValidationError if deletion is unsuccessful.

judge.handler.delete_personcontest(person_id, contest_id)
Function to delete the relation between a person and a contest.

Parameters

• person_id (str) – Person ID

• contest_id (int) – Contest ID

Return type Tuple[bool, Optional[ValidationError]]

Returns A 2-tuple - 1st element indicating whether the deletion has succeeded, and 2nd
element providing an error message if deletion is unsuccessful.

28 Chapter 2. The internals of the judge app in autojudge

PYTHON MODULE INDEX

j
judge.forms, 13
judge.handler, 21
judge.models, 9
judge.views, 17

29

autojudge

30 Python Module Index

INDEX

A
add_participant() (in module judge.views), 18
add_person() (in module judge.views), 18
add_person_to_contest() (in module

judge.handler), 24
add_persons_to_contest() (in module

judge.handler), 24
add_poster() (in module judge.views), 18
AddPersonToContestForm (class in judge.forms),

15
AddPosterScoreForm (class in judge.forms), 16
AddTestCaseForm (class in judge.forms), 15

C
clean() (judge.forms.NewContestForm method), 13
clean() (judge.forms.UpdateContestForm method), 16
code (judge.forms.NewProblemForm attribute), 14
code (judge.models.Problem attribute), 10
Comment (class in judge.models), 11
comment (judge.forms.NewCommentForm attribute), 15
comment (judge.models.Comment attribute), 12
commenter (judge.models.Comment attribute), 11
compilation_script

(judge.forms.NewProblemForm attribute),
14

compilation_script (judge.models.Problem
attribute), 10

Contest (class in judge.models), 9
contest (judge.models.ContestPerson attribute), 12
contest (judge.models.Problem attribute), 10
contest_detail() (in module judge.views), 19
contest_hard_end (judge.forms.NewContestForm

attribute), 13
contest_hard_end (judge.forms.UpdateContestForm

attribute), 16
contest_name (judge.forms.NewContestForm at-

tribute), 13
contest_scores_csv() (in module judge.views),

20
contest_soft_end (judge.forms.NewContestForm

attribute), 13

contest_soft_end (judge.forms.UpdateContestForm
attribute), 16

contest_start (judge.forms.NewContestForm
attribute), 13

contest_start (judge.forms.UpdateContestForm at-
tribute), 16

ContestPerson (class in judge.models), 12

D
delete_contest() (in module judge.handler), 27
delete_contest() (in module judge.views), 20
delete_personcontest() (in module

judge.handler), 28
delete_problem() (in module judge.handler), 27
delete_problem() (in module judge.views), 20
delete_testcase() (in module judge.handler), 27
delete_testcase() (in module judge.views), 20
DeletePersonFromContestForm (class in

judge.forms), 17
difficulty (judge.forms.EditProblemForm attribute),

17
difficulty (judge.forms.NewProblemForm attribute),

14
difficulty (judge.models.Problem attribute), 10

E
edit_problem() (in module judge.views), 18
EditProblemForm (class in judge.forms), 17
email (judge.forms.DeletePersonFromContestForm at-

tribute), 17
email (judge.models.Person attribute), 11
emails (judge.forms.AddPersonToContestForm at-

tribute), 15
enable_linter_score

(judge.forms.NewContestForm attribute),
13

enable_linter_score (judge.models.Contest at-
tribute), 9

enable_poster_score
(judge.forms.NewContestForm attribute),
13

31

autojudge

enable_poster_score (judge.models.Contest at-
tribute), 9

F
file_exts (judge.forms.NewProblemForm attribute),

14
file_exts (judge.models.Problem attribute), 10
file_type (judge.forms.NewSubmissionForm at-

tribute), 14
file_type (judge.models.Submission attribute), 10
final_score (judge.models.Submission attribute), 11

G
get_comments() (in module judge.handler), 27
get_csv() (in module judge.handler), 27
get_leaderboard() (in module judge.handler), 26
get_participants() (in module judge.handler), 26
get_participants() (in module judge.views), 19
get_people() (in module judge.views), 19
get_personcontest_permission() (in module

judge.handler), 25
get_personcontest_score() (in module

judge.handler), 26
get_personproblem_permission() (in module

judge.handler), 25
get_posters() (in module judge.handler), 25
get_posters() (in module judge.views), 19
get_submission_status() (in module

judge.handler), 26
get_submissions() (in module judge.handler), 26

H
handler404() (in module judge.views), 17
handler500() (in module judge.views), 18
hard_end_datetime (judge.models.Contest at-

tribute), 9

I
index() (in module judge.views), 17
input_file (judge.forms.AddTestCaseForm at-

tribute), 15
input_format (judge.forms.EditProblemForm at-

tribute), 17
input_format (judge.forms.NewProblemForm at-

tribute), 14
input_format (judge.models.Problem attribute), 10
inputfile (judge.models.TestCase attribute), 11
is_public (judge.forms.NewContestForm attribute),

13

J
judge.forms

module, 13

judge.handler
module, 21

judge.models
module, 9

judge.views
module, 17

judge_score (judge.models.Submission attribute), 11

L
linter_score (judge.models.Submission attribute),

11

M
max_score (judge.forms.NewProblemForm attribute),

14
max_score (judge.models.Problem attribute), 10
memory_limit (judge.forms.NewProblemForm at-

tribute), 14
memory_limit (judge.models.Problem attribute), 10
memory_taken (judge.models.SubmissionTestCase at-

tribute), 12
message (judge.models.SubmissionTestCase attribute),

12
module

judge.forms, 13
judge.handler, 21
judge.models, 9
judge.views, 17

N
name (judge.forms.EditProblemForm attribute), 17
name (judge.forms.NewProblemForm attribute), 14
name (judge.models.Contest attribute), 9
name (judge.models.Problem attribute), 10
new_contest() (in module judge.views), 18
new_problem() (in module judge.views), 18
NewCommentForm (class in judge.forms), 15
NewContestForm (class in judge.forms), 13
NewProblemForm (class in judge.forms), 14
NewSubmissionForm (class in judge.forms), 14

O
output_file (judge.forms.AddTestCaseForm at-

tribute), 16
output_format (judge.forms.EditProblemForm at-

tribute), 17
output_format (judge.forms.NewProblemForm at-

tribute), 14
output_format (judge.models.Problem attribute), 10
outputfile (judge.models.TestCase attribute), 11

P
participant (judge.models.Submission attribute), 10

32 Index

autojudge

participant_email
(judge.forms.NewCommentForm attribute),
15

penalty (judge.forms.NewContestForm attribute), 13
penalty (judge.models.Contest attribute), 9
Person (class in judge.models), 11
person (judge.models.Comment attribute), 11
person (judge.models.ContestPerson attribute), 12
person (judge.models.PersonProblemFinalScore

attribute), 13
PersonProblemFinalScore (class in

judge.models), 13
poster_score (judge.models.Submission attribute),

11
Problem (class in judge.models), 10
problem (judge.models.Comment attribute), 11
problem (judge.models.PersonProblemFinalScore at-

tribute), 13
problem (judge.models.Submission attribute), 10
problem (judge.models.TestCase attribute), 11
problem_compilation_script() (in module

judge.views), 20
problem_default_script() (in module

judge.views), 21
problem_detail() (in module judge.views), 19
problem_starting_code() (in module

judge.views), 20
problem_submissions() (in module judge.views),

19
problem_test_script() (in module judge.views),

21
process_comment() (in module judge.handler), 23
process_contest() (in module judge.handler), 21
process_person() (in module judge.handler), 23
process_problem() (in module judge.handler), 22
process_submission() (in module judge.handler),

22
process_testcase() (in module judge.handler), 22
public (judge.models.Contest attribute), 9
public (judge.models.TestCase attribute), 11

R
rank (judge.models.Person attribute), 11
role (judge.models.ContestPerson attribute), 12

S
score (judge.forms.AddPosterScoreForm attribute), 16
score (judge.models.PersonProblemFinalScore at-

tribute), 13
soft_end_datetime (judge.models.Contest at-

tribute), 9
start_datetime (judge.models.Contest attribute), 9
starting_code (judge.forms.NewProblemForm at-

tribute), 14

starting_code (judge.models.Problem attribute), 10
statement (judge.forms.EditProblemForm attribute),

17
statement (judge.forms.NewProblemForm attribute),

14
statement (judge.models.Problem attribute), 10
Submission (class in judge.models), 10
submission (judge.models.SubmissionTestCase

attribute), 12
submission_detail() (in module judge.views), 19
submission_download() (in module judge.views),

21
submission_file (judge.forms.NewSubmissionForm

attribute), 15
submission_file (judge.models.Submission at-

tribute), 10
SubmissionTestCase (class in judge.models), 12

T
test_script (judge.forms.NewProblemForm at-

tribute), 14
test_script (judge.models.Problem attribute), 10
test_type (judge.forms.AddTestCaseForm attribute),

15
TestCase (class in judge.models), 11
testcase (judge.models.SubmissionTestCase at-

tribute), 12
time_limit (judge.forms.NewProblemForm attribute),

14
time_limit (judge.models.Problem attribute), 10
time_taken (judge.models.SubmissionTestCase

attribute), 12
timestamp (judge.models.Comment attribute), 12
timestamp (judge.models.Submission attribute), 11

U
update_leaderboard() (in module judge.handler),

25
update_poster_score() (in module

judge.handler), 24
update_problem() (in module judge.handler), 24
UpdateContestForm (class in judge.forms), 16

V
verdict (judge.models.SubmissionTestCase attribute),

12

Index 33

	Setting up and running autojudge
	The internals of the judge app in autojudge
	Python Module Index
	Index

