

Welcome to autojudge’s documentation!

Setting up and running autojudge

	The autojudge “Install and Use” Reference

The internals of the judge app in autojudge

	The autojudge API Reference

The autojudge “Install and Use” Reference

This section of the documentation will describe how to install the tool in your system / server and subsequently play around with it - basically how to use autojudge.

	Installing autojudge
	Phase 1 : Get autojudge and set up your environment
	Phase 1a: Getting autojudge

	Phase 1b: Setting up your environment

	Phase 2 : Run autojudge
	Development

	Production

	User Manual for autojudge
	Some important abstractions / terminology used in autojudge
	Example:

	Hands-on with autojudge
	Creating your account / Logging in

	Creating a contest

	Managing problems in a contest

	Submitting and checking submissions: Participant end

	Managing submissions from the poster’s side

	Commenting

	Miscellaneous

Installing autojudge

autojudge is a tool developed for automating evaluation for code submission in coding contests and in assigments at college. For your convenience, we have split this usage manual into 3 phases.

Phase 1 : Get autojudge and set up your environment

Phase 1a: Getting autojudge

autojudge is available on GitHub, and you can download a version of your choice from the releases page [https://github.com/vbsinha/autojudge/releases]. We prefer that you use the latest version.

Extract the compressed files and you now have autojudge ready to use.

If you are a fan of master, then clone the repository, either using git or by downloading from GitHub from here [https://github.com/vbsinha/autojudge].

Phase 1b: Setting up your environment

The evaluation of submissions are conducted on a Docker image that is built while initializing the application. Please install Docker using the instructions provided on their installation page [https://docs.docker.com/install/linux/docker-ce/ubuntu].

If you are very conservative about populating your default environment with random Python packages, create a virtual environment for installing some new packages either using virtualenv or conda-env.

Install the requirements specified in requirements.txt. Don’t forget to activate your environment if you have one.

If you going to deploy autojudge, please install PostgreSQL using the instructions provided on their installation page [https://www.postgresql.org/download/linux/ubuntu/].

Phase 2 : Run autojudge

Activate your environment.

Create and apply database migrations in Django with the following commands:

python manage.py makemigrations
python manage.py migrate

There are two ways of using autojudge.

Development

To run autojudge locally:

python manage.py runserver

Go to localhost:8000 in your favourite browser. Keep yourself connected to internet for full functionality as certain frontend support such as JavaScript scripts are pulled from the internet.

The program submission_watcher_saver.py scores the submissions serially in the chronological order of submissions. It can be started anytime after the server has started, but it is preferred that the program be kept running in parallel with the server. Run it using:

python submission_watcher_saver.py

Production

The procedure to deploy autojudge is different from running locally. Below are a series of steps that will help you deploy autojudge.

Set the environmental variable AUTOJUDGE_SECRET_KEY to a random string, which should not be exposed to anyone. Think of it to be a private key.

Now modify a few more settings to settings_production.py. The first is to setup the database. We suggest using a PostgreSQL database. This modification can be done by adding the below dictionary to settings_production.py. Modify the values NAME, USER, PASSWORD, HOST and PORT accordingly.

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'mydatabase', # Sample
 'USER': 'mydatabaseuser', # Sample
 'PASSWORD': 'mypassword', # Sample
 'HOST': '127.0.0.1', # Sample
 'PORT': '5432', # Sample
 }
}

Next we setup the STATIC_ROOT path, the location where you would like the static files to be generated. This has to be set in settings_production.py.

To generate the static files, run:

python manage.py collectstatic --settings=autojudge.settings_production.py

The static files are generated in the path specified by STATIC_ROOT previously.

Now host the static files on a server and configure the URL in STATIC_URL in settings_production.py. If you have hosted the generated static files at https://static.autojudge.com, then change the STATIC_URL to https://static.autojudge.com/ (note the trailing slash is required).

You could optionally setup a cache server. Instructions to do this are specified here [https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-CACHES].

Configure the security settings in settings_production.py (leave it to the default values if you will be hosting on https).

To configure the Apache server using WSGI, follow the instructions here [https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/].

And finally, set environment variable DJANGO_SETTINGS_MODULE to autojudge.settings_production as opposed to autojudge.settings which is present by default.

User Manual for autojudge

Some important abstractions / terminology used in autojudge

Note

Please make note of the terms in bold

The judge works on graph between contests and users. A contest consists of a set of problems. A user is, well, a user - with different roles.

A user can be either a poster, participant or neither. A user is associated with the contest with one and only one role - either a poster, participant or neither.

The user who creates a new contest becomes the poster for the contest by default.
This user can add more posters to help coordinate the contest (perhaps by setting new problems, verifying and commenting on submissions, and so on).

While creating a new contest, the first poster has an option to either allow select participants, or to leave it open for all.
The former kind of a contest is a private contest, and the latter kind of a contest is a public contest (for obvious reasons). No poster is allowed to take part in a contest as a participant i.e., he/she cannot submit solutions.

If the contest is public, every user is either a poster or a participant. If the contest is private, a user can either be a poster, a participant or neither - in which case, he/she will not be permitted to participant in the contest.

Maybe a short example will help you understand if something is confusing….

Example:

Take the case of a course assignment with programming questions. These programming questions could compose a contest, where each question is a problem. The instructor and the TAs can be thought of as the posters, while registered students for the course would be participants. Students not registered for the course will not be able to participate in this contest - as you would expect.

Hands-on with autojudge

Creating your account / Logging in

You need to be logged in to use autojudge. On the home page, click LOG IN (see the top right corner in the image below)

[image: Log in]

If this is being used at an institution, please make sure you log in with your institutional account. Currently, we support Google OAuth logins.

Creating a contest

Once you are logged in, follow the steps below to create a new contest.

	Click the New Contest button on the dashboard (see beneath the blue header in the image below)

[image: New contest dashboard]

	Fill out the form for creating a new contest.

[image: Contest form]

Note

The contest name distinguishes contests, hence every contest must have a unique name. Failure to provide a unique name will throw an interactive error.

Note

Penalty is a value between 0 and 1 and specifies the per day penalty on submissions made after soft end date. For example: a contest having 0.1 penalty for example, would give 90% of the actually scored points by a submission if it is made within 24 hours after soft end date but before hard end date.

Note

It is advised that linter scoring be disabled unless all code submissions are made in Python.

Note

Enable poster scoring if you would like the posters to give points in addition to those given by the judge.

You should be able to see the newly created contest on your dashboard. No one else would be able to see this new contest on their dashboard until the start time of this contest.

[image: Contest created]

Click on the contest in the link on the dashboard to edit it.

[image: Contest detail click]

To add more posters to the contest, click on SEE POSTERS.
You can add one or more posters by adding their emails in a comma separated list after clicking on ADD POSTER.
The new poster(s) would now be able to see this contest on their dashboard (even before the start time). They can also edit the contest.
To delete posters, click on the red bin button adjacent to each poster’s email ID.

[image: Poster view]

In the case of a private contest, the poster(s) can also see a SEE PARTICIPANTS button.
Clicking this will lead them to a page where they can edit the Participant list in the same manner as the poster list.

Note

Trying to add a user both as a participant and a poster will not be permitted.

Any of the posters can update the dates of the contest by clicking on UPDATE DATES.
Please update the dates before they pass, and attempting to do so will throw an interactive error.

Note that a participant cannot add or delete other participants or posters. Also he/she cannot update the dates.

A poster can also delete a contest using the button at the bottom of the contest page.

Managing problems in a contest

A contest consists of problems. Problems can be added, edited or deleted by the posters of the contest.

A problem can be added to a contest only before the start time of the contest.
To add a problem to the contest, follow the steps below:

	Click ADD PROBLEM from the contest’s homepage.

[image: New problem contest]

	Fill the form that follows. Short descriptions for fields in the form are provided.

[image: Problem form]

Note

The problem code distinctly identifies a problem, hence every problem must have a unique name. Failure to provide a unique name will throw an interactive error.

Note

In case the compilation script and test script are left empty, the default ones are used. The default scripts can be downloaded from the links just below the Browse button for each of them.

	After submission, you can add or delete test cases on the problem page. There are two kinds of test cases - public test cases and private test cases. Public test cases would be visible to the participants while private test cases won’t be visible.

[image: Problem test case]

Note

Test case addition and deletion will be allowed only till the start of the contest.

Posters can edit or delete an existing problem in the contest using the 2 icons on the top-right of the problem page (see to the right of the problem title).

[image: Problem edit delete]

Note

Deletion of a problem is only allowed until the contest begins.

Submitting and checking submissions: Participant end

A participant can make submission for a problem from the problem page. Select the language and upload the submission file.

To check your previous submissions, and the judge’s score for your submissions, click SEE MY PREVIOUS SUBMISSIONS at the bottom of the problem page.

If you want a detailed verdict of the judge for a submission, click on that submission. You can see the verdict of the judge on individual test cases concisely below or in detail by clicking on a test case. You can also download your submission from here as well.

Once the contest begins and participants start submitting, the leaderboard is initialized and can be seen on the contest page.
The leaderboard lists the participants in the decreasing order of sum of scores in individual problems in the contest.

Please note that the max score seen on the problem page is the maximum score possible per test case. For example, if there are 5 test cases and max score is 10 points, then a participant can score at most 50 points for that problem by the judge (i.e., notwithstanding the linter score and/or the poster score).

Managing submissions from the poster’s side

Posters can see all the submissions pertaining to a problem in the problem page by clicking SEE ALL SUBMISSIONS at the bottom of the page.

Submissions made by all the participants for a given problem would be available here. Click on any submission to open the submission page. The layout is the same as that seen by the participants.

In case poster scoring is enabled for the contest, the poster can give a score from the submission page by clicking on UPDATE POSTER SCORE on the top right adjacent to the download icon. Poster score can be any integer.

The poster can also view the submission file from the submission page by downloading it via the DOWNLOAD button on the top right.

Commenting

Posters and participants can also comment. A comment by a participant to a problem can be viewed by all posters but not by any other participants - similar to private comments on Google Classroom.

To see old comments or create a new one, click on SEE ALL SUBMISSIONS on the problem page.

Miscellaneous

A poster can download a CSV file containing the best scores of all participants in a contest by clicking on DOWNLOAD SCORES from the contest page.

The autojudge API Reference

This part of the documentation specifies routines and their description used in this project.

	Models and Database Schema
	Base Models
	Contest

	Problem

	Submission

	TestCase

	Person

	Comment

	Derived Models
	ContestPerson

	SubmissionTestCase

	PersonProblemFinalScore

	Forms and input pre-processing
	Creation forms
	NewContestForm

	NewProblemForm

	NewSubmissionForm

	NewCommentForm

	Extension forms
	AddPersonToContestForm

	AddTestCaseForm

	AddPosterScoreForm

	Updation forms
	UpdateContestForm

	EditProblemForm

	Deletion forms
	DeletePersonFromContestForm

	Views and page rendering
	Default Views

	Creation Views

	Modification Views

	Detail Views

	Deletion Views

	Downloading Views

	Handlers and database management
	Process Functions

	Addition Functions

	Update Functions

	Getter Functions

	Deletion Functions

Models and Database Schema

Base Models

Contest

	
class judge.models.Contest(*args, **kwargs)

	Model for Contest.

	
name

	Contest name

	
start_datetime

	Start Date and Time for Contest

	
soft_end_datetime

	“Soft” End Date and Time for Contest

	
hard_end_datetime

	“Hard” End Date and Time for Contest

	
penalty

	Penalty for late-submission

	
public

	Is the contest public?

	
enable_linter_score

	Enable linter scoring

	
enable_poster_score

	Enable poster scoring

Problem

	
class judge.models.Problem(*args, **kwargs)

	Model for a Problem.

	
code

	Problem code

	
contest

	Foreign key to contest for the problem

	
name

	Problem name

	
statement

	Problem statement

	
input_format

	Problem input format

	
output_format

	Problem output format

	
difficulty

	Problem difficulty

	
time_limit

	Problem time limit

	
memory_limit

	Problem memory limit

	
file_exts

	Accepted file extensions for submissions to problem

	
starting_code

	Problem starting code

	
max_score

	Maximum score for a test case for the problem

	
compilation_script

	Problem compilation script

	
test_script

	Problem test script

Submission

	
class judge.models.Submission(*args, **kwargs)

	Model for a Submission.

	
problem

	Foreign key to problem for which this is a submission

	
participant

	Foreign key to person who submitted the solution

	
file_type

	File type of submission

	
submission_file

	Submission file

	
timestamp

	Timestamp of submission

	
judge_score

	Judge score

	
poster_score

	Poster score

	
linter_score

	Linter score

	
final_score

	Final score

TestCase

	
class judge.models.TestCase(*args, **kwargs)

	Model for TestCase.
Maintains testcases and mapping between TestCase and Problem.

	
problem

	Foreign key to problem for which this is a test case

	
public

	Determines if the test case is a public test case or a private test case

	
inputfile

	Input file for the test case

	
outputfile

	Output file for the test case

Person

	
class judge.models.Person(*args, **kwargs)

	Model for Person.

	
email

	Email ID of the Person

	
rank

	Rank of the Person

Comment

	
class judge.models.Comment(*args, **kwargs)

	Model for Comment.

	
problem

	Foreign key to problem relating to the comment

	
person

	Foreign key to person

	
commenter

	Foreign key to person who commented

	
timestamp

	Timestamp of the comment

	
comment

	Content of the comment

Derived Models

ContestPerson

	
class judge.models.ContestPerson(*args, **kwargs)

	Model for ContestPerson.
This maps how (either as a Participant or Poster) persons have access to the contests.

	
contest

	Foreign key to contest in which this person is taking part

	
person

	Foreign key to the actual person

	
role

	Determines if Person is a Poster or a Participant

SubmissionTestCase

	
class judge.models.SubmissionTestCase(*args, **kwargs)

	Model for SubmissionTestCase.
Maintains mapping between TestCase and Submission.

	
submission

	Foreign key to submission

	
testcase

	Foreign key to test case

	
verdict

	Verdict by the judge

	
memory_taken

	Virtual memory consumed by the submission

	
time_taken

	Time taken by the submission

	
message

	Message placeholder, used for erroneous submissions

PersonProblemFinalScore

	
class judge.models.PersonProblemFinalScore(*args, **kwargs)

	Model to store the final score assigned to a person for a problem.

	
problem

	Foreign key to problem for which the score is saved

	
person

	Foreign key to person whose submission’s score is saved

	
score

	Final score saved

Forms and input pre-processing

Creation forms

NewContestForm

	
class judge.forms.NewContestForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form for creating a new Contest.

	
contest_name

	Contest Name

	
contest_start

	Contest Start Timestamp

	
contest_soft_end

	Contest Soft End Timestamp

	
contest_hard_end

	Contest Hard End Timestamp

	
penalty

	Contest Penalty factor

	
is_public

	Contest is_public property

	
enable_linter_score

	Contest enable_linter_score property

	
enable_poster_score

	Contest enable_poster_score property

	
clean()

	Hook for doing any extra form-wide cleaning after Field.clean() has been
called on every field. Any ValidationError raised by this method will
not be associated with a particular field; it will have a special-case
association with the field named ‘__all__’.

NewProblemForm

	
class judge.forms.NewProblemForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form for adding a new Problem.

	
code

	Problem Code Field

	
name

	Problem Name Field

	
statement

	Problem Statement Field

	
input_format

	Problem Input Format Field

	
output_format

	Problem Output Format Field

	
difficulty

	Problem Difficulty Field

	
time_limit

	Problem Time limit

	
memory_limit

	Problem Memory limit

	
file_exts

	Problem File Extensions

	
starting_code

	Problem Starting code

	
max_score

	Problem Max Score

	
compilation_script

	Problem Compilation Script

	
test_script

	Problem Test Script

NewSubmissionForm

	
class judge.forms.NewSubmissionForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form to create a new Submission.

	
file_type

	Choices of file type

	
submission_file

	Submission File

NewCommentForm

	
class judge.forms.NewCommentForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form to add a new comment

	
participant_email

	Email of participant

	
comment

	Comment content

Extension forms

AddPersonToContestForm

	
class judge.forms.AddPersonToContestForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form to add a Person to a Contest.

	
emails

	Email ID of the person

AddTestCaseForm

	
class judge.forms.AddTestCaseForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form to create a new TestCase

	
test_type

	TestCase Type

	
input_file

	TestCase Input

	
output_file

	TestCase Output

AddPosterScoreForm

	
class judge.forms.AddPosterScoreForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form to add poster score for a submission

	
score

	Score field

Updation forms

UpdateContestForm

	
class judge.forms.UpdateContestForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form to update the timeline of the Contest

	
contest_start

	Contest Start Timestamp

	
contest_soft_end

	Contest Soft End Timestamp

	
contest_hard_end

	Contest Hard End Timestamp

	
clean()

	Hook for doing any extra form-wide cleaning after Field.clean() has been
called on every field. Any ValidationError raised by this method will
not be associated with a particular field; it will have a special-case
association with the field named ‘__all__’.

EditProblemForm

	
class judge.forms.EditProblemForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form for editing an existing problem.

	
name

	Problem Name Field

	
statement

	Problem Statement Field

	
input_format

	Problem Input Format Field

	
output_format

	Problem Output Format Field

	
difficulty

	Problem Difficulty Field

Deletion forms

DeletePersonFromContestForm

	
class judge.forms.DeletePersonFromContestForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None, use_required_attribute=None, renderer=None)

	Form to remove a Person from a Contest.

	
email

	Email ID of the person

Views and page rendering

Default Views

	
judge.views.index(request)

	Renders the index page.

	Parameters

	request (HttpRequest) – the request object used

	
judge.views.handler404(request, *args)

	Renders 404 page.

	Parameters

	request (HttpRequest) – the request object used

	
judge.views.handler500(request, *args)

	Renders 500 page.

	Parameters

	request (HttpRequest) – the request object used

Creation Views

	
judge.views.new_contest(request)

	Renders view for the page to create a new contest.

	Parameters

	request (HttpRequest) – the request object used

	
judge.views.new_problem(request, contest_id)

	Renders view for the page to create a new problem in a contest.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

Modification Views

	
judge.views.edit_problem(request, problem_id)

	Renders view for the page to edit selected fields of a pre-existing problem.

	Parameters

	
	request (HttpRequest) – the request object used

	problem_id (str) – the problem ID

	
judge.views.add_person(request, contest_id, role)

	Function to render the page for adding a person - participant or poster to
a contest.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

	role (bool) – True for Poster, False for Participant

	
judge.views.add_poster(request, contest_id)

	Renders the page for adding a poster.
Dispatches to add_person() with role set to True.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

	
judge.views.add_participant(request, contest_id)

	Renders the page for adding a participant.
Dispatches to add_person() with role set to False.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

Detail Views

	
judge.views.contest_detail(request, contest_id)

	Renders the contest preview page after the contest has been created.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

	
judge.views.problem_detail(request, problem_id)

	Renders the problem preview page after the problem has been created.
This preview will be changed based on the role of the user (poster or participant).

	Parameters

	
	request (HttpRequest) – the request object used

	problem_id (str) – the problem ID

	
judge.views.submission_detail(request, submission_id)

	Renders the page where a detailed breakdown with respect to judge’s
evaluation, additional scores, error messages displayed and so on.

	Parameters

	
	request (HttpRequest) – the request object used

	submission_id (str) – the submission ID

	
judge.views.get_people(request, contest_id, role)

	Function to render the page for viewing participants and posters
for a contest based on role.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

	role (bool) – True for Poster, False for Participant

	
judge.views.get_posters(request, contest_id)

	Renders the page for posters of a contest.
Dispatches to get_people() with role set to True.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

	
judge.views.get_participants(request, contest_id)

	Renders the page for posters of a contest.
Dispatches to get_people() with role set to False.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

	
judge.views.problem_submissions(request, problem_id)

	Renders the page where all submissions to a given problem can be seen.
For posters, this renders a set of tables for each participant.
For participants, this renders a table with the scores of their submissions only.

	Parameters

	
	request (HttpRequest) – the request object used

	problem_id (str) – the problem ID

Deletion Views

	
judge.views.delete_contest(request, contest_id)

	Function to provide the option to delete a contest.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

	
judge.views.delete_problem(request, problem_id)

	Function to provide the option to delete a problem.

	Parameters

	
	request (HttpRequest) – the request object used

	problem_id (str) – the problem ID

	
judge.views.delete_testcase(request, problem_id, testcase_id)

	Function to provide the option to delete a test-case of a particular problem.

	Parameters

	
	request (HttpRequest) – the request object used

	problem_id (str) – the problem ID

	testcase_id (str) – the testcase ID

Downloading Views

	
judge.views.contest_scores_csv(request, contest_id)

	Function to provide the facility to download a CSV of scores
of participants in a contest at a given point in time.

	Parameters

	
	request (HttpRequest) – the request object used

	contest_id (int) – the contest ID

	
judge.views.problem_starting_code(request, problem_id)

	Function to provide the facility to download the starting code
for a problem.

	Parameters

	
	request (HttpRequest) – the request object used

	problem_id (str) – the problem ID

	
judge.views.problem_compilation_script(request, problem_id)

	Function to provide the facility to download the compilation script
for a problem after creating the problem.

	Parameters

	
	request (HttpRequest) – the request object used

	problem_id (str) – the problem ID

	
judge.views.problem_test_script(request, problem_id)

	Function to provide the facility to download the testing script
for a problem after creating the problem.

	Parameters

	
	request (HttpRequest) – the request object used

	problem_id (str) – the problem ID

	
judge.views.problem_default_script(request, script_name)

	Function to provide the facility to download the
default compilation or test script.

	Parameters

	
	request (HttpRequest) – the request object used

	script_name (str) – name of the script - one of compilation_script or test_script

	
judge.views.submission_download(request, submission_id)

	Function to provide the facility to download a given submission.

	Parameters

	
	request (HttpRequest) – the request object used

	submission_id (str) – the submission ID

Handlers and database management

Process Functions

	
judge.handler.process_contest(contest_name, contest_start, contest_soft_end, contest_hard_end, penalty, is_public, enable_linter_score, enable_poster_score)

	Function to process a new Contest.

	Parameters

	
	contest_name (str) – Name of the contest

	contest_start (datetime) – A datetime object representing the beginning of the contest

	contest_soft_end (datetime) – A datetime object representing the soft deadline of the contest

	contest_hard_end (datetime) – A datetime object representing the hard deadline of the contest

	penalty (float) – A penalty score for late submissions

	is_public (bool) – Field to indicate if the contest is public (or private)

	enable_linter_score (bool) – Field to indicate if linter scoring is enabled in the contest

	enable_poster_score (bool) – Field to indicate if poster scoring is enabled in the contest

	Return type

	Tuple[bool, Union[ValidationError, str]]

	Returns

	A 2-tuple - 1st element indicating whether the processing has succeeded, and
2nd element providing a ValidationError if processing is unsuccessful.

	
judge.handler.process_problem(contest_id, **kwargs)

	Function to process a new Problem.

	Parameters

	contest_id (int) – Contest ID to which the problem belongs

**kwargs includes the following keyword arguments, which are directly passed
to the construct a Problem object.

	Parameters

	
	code (str) – Problem code

	name (str) – Problem name

	statement (Optional[InMemoryUploadedFile]) – Problem statement

	input_format – Problem input format

	output_format – Problem output format

	difficulty – Problem difficulty

	time_limit – Problem execution time limit

	memory_limit – Problem virtual memory limit

	file_exts – Accepted file format for submissions

	starting_code – Starting code for the problem

	max_score – Maximum judge score per test case for the problem

	compilation_script – Compilation script for the submissions

	test_script – Test script for the submissions

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the processing has succeeded, and
2nd element providing a ValidationError if processing is unsuccessful.

	
judge.handler.process_submission(problem_id, participant_id, file_type, submission_file, timestamp)

	Function to process a new Submission for a problem by a participant.

	Parameters

	
	problem_id (str) – Problem ID for the problem corresponding to the submission

	participant_id (str) – Participant ID

	file_type (str) – Submission file type

	submission_file (InMemoryUploadedFile) – Submission file

	timestamp (str) – Time at submission

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the processing has succeeded, and
2nd element providing a ValidationError if processing is unsuccessful.

	
judge.handler.process_testcase(problem_id, test_type, input_file, output_file)

	Function to process a new TestCase for a problem.

Warning

This function does not rescore all the submissions and so score will not
change in response to the new testcase. Do not call this function once the
contest has started, it will lead to erroneous scores.

	Parameters

	
	problem_id (str) – Problem ID to which the testcase is added.

	test_type (str) – Type of testcase - one of public, private.

	input_file (InMemoryUploadedFile) – Input file for the testcase.

	output_file (InMemoryUploadedFile) – Output file for the testcase.

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the processing has succeeded, and
2nd element providing a ValidationError if processing is unsuccessful.

	
judge.handler.process_person(email, rank=0)

	Function to process a new Person.

	Parameters

	
	email (str) – Email of the person

	rank (int) – Rank of the person (defaults to 0).

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the processing has succeeded, and
2nd element providing a ValidationError if processing is unsuccessful.

	
judge.handler.process_comment(problem_id, person_id, commenter_id, timestamp, comment)

	Function to process a new Comment on the problem.

	Parameters

	
	problem_id (str) – Problem ID

	person_id (str) – Person ID

	commenter_id (str) – Commenter (another person) ID

	timestamp (datetime) – Date and Time of comment

	comment (str) – Comment content

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the processing has succeeded, and
2nd element providing a ValidationError if processing is unsuccessful.

Addition Functions

	
judge.handler.add_person_to_contest(person_id, contest_id, permission)

	Function to relate a person to a contest with permissions.

	Parameters

	
	person_id (str) – Person ID

	contest_id (int) – Contest ID

	permission (bool) – If True, then poster, if False, then participant

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the addition has succeeded, and
2nd element providing a ValidationError if addition is unsuccessful.

	
judge.handler.add_persons_to_contest(persons, contest_id, permission)

	Function to relate a list of persons and contest with permissions. This function
would create records for all the persons who are not present in the database irrespective
of whether anyone has conflict or not.

	Parameters

	
	persons (List[str]) – List of person IDs

	contest_id (int) – Contest ID

	permission (bool) – If True, then poster, if False, then participant

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the relation creation has succeeded, and
2nd element providing a ValidationError if relation creation is unsuccessful.

Update Functions

	
judge.handler.update_problem(code, name, statement, input_format, output_format, difficulty)

	Function to update selected fields in a Problem after creation.
The fields that can be modified are name, statement, input_format, output_format
and difficulty.

	Parameters

	
	code (str) – Problem ID

	name (str) – Modified problem name

	statement (str) – Modified problem statement

	input_format (str) – Modified problem input format

	output_format (str) – Modified problem output format

	difficulty (str) – Modified problem difficulty

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the update has succeeded, and
2nd element providing a ValidationError if update is unsuccessful.

	
judge.handler.update_poster_score(submission_id, new_score)

	Function to update the poster score for a submission. Leaderboard is updated if the
total score for the person-problem pair has changed.

	Parameters

	
	submission_id (str) – Submission ID of the submission

	new_score (int) – New score to be assigned

	Returns

	A 2-tuple - 1st element indicating whether the update has succeeded, and
2nd element providing a ValidationError if update is unsuccessful.

	
judge.handler.update_leaderboard(contest_id, person_id)

	Function to update the leaderboard for a person-contest pair given their IDs.

Note

Only call this function when some submission for some problem of the contest
has scored more than its previous submission.
Remember to call this function whenever
PersonProblemFinalScore is updated.

	Parameters

	
	contest_id (int) – Contest ID

	person_id (str) – Person ID

	Return type

	bool

	Returns

	If update is successful, then True. If unsuccessful, then False.

Getter Functions

	
judge.handler.get_personcontest_permission(person_id, contest_id)

	Function to give the relation between a Person and a
Contest.

	Parameters

	
	person_id (Optional[str]) – Person ID

	contest_id (int) – Contest ID

	Return type

	Optional[bool]

	Returns

	If participant, then False, if poster, then True, if neither, then None

	
judge.handler.get_personproblem_permission(person_id, problem_id)

	Function to give the relation between a Person and a
Contest. This dispatches to get_personcontest_permission()
with relevant arguments.

	Parameters

	
	person_id (Optional[str]) – Person ID

	problem_id (str) – Problem ID

	Return type

	Optional[bool]

	Returns

	If participant, then False, if poster, then True, if neither, then None

	
judge.handler.get_posters(contest_id)

	Function to return the list of the posters for a Contest.

	Parameters

	contest_id (int) – Contest ID

	Return type

	Tuple[bool, Union[ValidationError, List[str]]]

	Returns

	A 2-tuple - 1st element indicating whether the retrieval has succeeded.
If successful, a list of IDs are present in the 2nd element.
If unsuccessful, a ValidationError is additionally returned.

	
judge.handler.get_participants(contest_id)

	Function to return the list of the participants for a Contest.

	Parameters

	contest_id (int) – Contest ID

	Return type

	Tuple[bool, Union[ValidationError, List[str]]]

	Returns

	A 2-tuple - 1st element indicating whether the retrieval has succeeded.
If successful, a list of IDs are present in the 2nd element. The list is
empty if the contest is public.
If unsuccessful, a ValidationError is additionally returned.

	
judge.handler.get_personcontest_score(person_id, contest_id)

	Function to get the final score, which is the sum of individual final scores
of all problems in a contest for a particular person.

	Parameters

	
	person_id (str) – Person ID

	contest_id (int) – Contest ID

	Return type

	Tuple[bool, Union[float, ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the retrieval has succeeded.
If successful, the final score is present in the 2nd element.
If unsuccesful, a ValidationError is additionally returned.

	
judge.handler.get_submission_status(submission_id)

	Function to get the current status of the submission given its submission ID.

	Parameters

	submission_d – Submission ID

	Returns

	A 2-tuple - 1st element indicating whether the retrieval has succeeded.
If successful, a tuple consisting of a dictionary and a smaller tuple.
The key for the dictionary is the testcase ID, and value is another smaller
tuple consisting of the verdict, time taken, memory consumed, flag to indicate
if the testcase was public or private and message after checking.
The smaller tuple consists of the score given by the judge, poster (if applicable),
and linter (if applicable), as well as the final score, timestamp of submission and
the file type of submission.
If unsuccessful, a ValidationError is additionally returned.

	
judge.handler.get_submissions(problem_id, person_id)

	Function to retrieve all submissions made by everyone or a specific person for this
problem.

	Parameters

	
	problem_id (str) – Problem ID

	person_id (Optional[str]) – Person ID

	Return type

	Tuple[bool, Union[Dict[str, List[Any]], ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the retrieval has succeeded.
If successful, and person_id is None, then the list of submissions
pertaining to each person is placed in a dictionary, and if person_id
is provided, then the list of submissions pertaining to the specific person is
placed in a dictionary and returned.
If unsuccessful, then a ValidationError is additionally returned.

	
judge.handler.get_leaderboard(contest_id)

	Function to returns the current leaderboard for a contest given its contest ID.

	Parameters

	contest_id (int) – Contest ID

	Return type

	Tuple[bool, Union[str, List[List[Union[str, float]]]]]

	Returns

	A 2-tuple - 1st element indicating whether leaderboard has been initialized or not.
If initialized, a list of 2-length lists is returned ordered by decreasing
scores. The first element is the rank, and the second element is the score.
If uninitialized, a suitable message is provided

	
judge.handler.get_comments(problem_id, person_id)

	Function to get the private comments on the problem for the person.

	Parameters

	
	problem_id (str) – Problem ID

	person_id (str) – Person ID

	Return type

	List[Tuple[Any, Any, Any]]

	Returns

	List of 3-tuple of comments -
the person who commented, the timestamp and the comment content, sorted in
chronological order.

	
judge.handler.get_csv(contest_id)

	Function to get the CSV (in string form) of the current scores of
all participants in a contest given its contest ID.

	Parameters

	contest_id (int) – Contest ID

	Return type

	Tuple[bool, Union[ValidationError, StringIO]]

	Returns

	A 2-tuple - 1st element indicating whether the retrieval has succeeded, and
2nd element providing a ValidationError if processing is unsuccessful or a
StringIO object if successful.

Deletion Functions

	
judge.handler.delete_contest(contest_id)

	Function to delete a Contest given its contest ID.
This will cascade delete in all the tables that have contest_id as a foreign key.
It calls delete_problem() for each problem in the contest.

	Parameters

	contest_id (int) – the contest ID

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the deletion has succeeded, and
2nd element providing a ValidationError if deletion is unsuccessful.

	
judge.handler.delete_problem(problem_id)

	Function to delete a Problem given its problem ID.
This will cascade delete in all the tables that have problem_id as a foreign key.
It will also delete all the submissions, testcases and related
directories corresponding to the problem.

	Parameters

	problem_id (str) – the problem ID

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the deletion has succeeded, and
2nd element providing a ValidationError if deletion is unsuccessful.

	
judge.handler.delete_testcase(testcase_id)

	Function to delete a TestCase given its testcase ID.
This will cascade delete in all the tables where this testcase appears.

Warning

This function does not rescore all the submissions and so score will not
change in response to the deleted testcase. Do not call this function once the
contest has started, it will lead to erroneous scores.

	Parameters

	testcase_id (str) – the testcase ID

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the deletion has succeeded, and
2nd element providing a ValidationError if deletion is unsuccessful.

	
judge.handler.delete_personcontest(person_id, contest_id)

	Function to delete the relation between a person and a contest.

	Parameters

	
	person_id (str) – Person ID

	contest_id (int) – Contest ID

	Return type

	Tuple[bool, Optional[ValidationError]]

	Returns

	A 2-tuple - 1st element indicating whether the deletion has succeeded, and
2nd element providing an error message if deletion is unsuccessful.

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 judge	

 	
 	
 judge.forms	

 	
 	
 judge.handler	

 	
 	
 judge.models	

 	
 	
 judge.views	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_participant() (in module judge.views)

 	add_person() (in module judge.views)

 	add_person_to_contest() (in module judge.handler)

 	add_persons_to_contest() (in module judge.handler)

 	
 	add_poster() (in module judge.views)

 	AddPersonToContestForm (class in judge.forms)

 	AddPosterScoreForm (class in judge.forms)

 	AddTestCaseForm (class in judge.forms)

C

 	
 	clean() (judge.forms.NewContestForm method)

 	(judge.forms.UpdateContestForm method)

 	code (judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	Comment (class in judge.models)

 	comment (judge.forms.NewCommentForm attribute)

 	(judge.models.Comment attribute)

 	commenter (judge.models.Comment attribute)

 	compilation_script (judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	Contest (class in judge.models)

 	
 	contest (judge.models.ContestPerson attribute)

 	(judge.models.Problem attribute)

 	contest_detail() (in module judge.views)

 	contest_hard_end (judge.forms.NewContestForm attribute)

 	(judge.forms.UpdateContestForm attribute)

 	contest_name (judge.forms.NewContestForm attribute)

 	contest_scores_csv() (in module judge.views)

 	contest_soft_end (judge.forms.NewContestForm attribute)

 	(judge.forms.UpdateContestForm attribute)

 	contest_start (judge.forms.NewContestForm attribute)

 	(judge.forms.UpdateContestForm attribute)

 	ContestPerson (class in judge.models)

D

 	
 	delete_contest() (in module judge.handler)

 	(in module judge.views)

 	delete_personcontest() (in module judge.handler)

 	delete_problem() (in module judge.handler)

 	(in module judge.views)

 	
 	delete_testcase() (in module judge.handler)

 	(in module judge.views)

 	DeletePersonFromContestForm (class in judge.forms)

 	difficulty (judge.forms.EditProblemForm attribute)

 	(judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

E

 	
 	edit_problem() (in module judge.views)

 	EditProblemForm (class in judge.forms)

 	email (judge.forms.DeletePersonFromContestForm attribute)

 	(judge.models.Person attribute)

 	
 	emails (judge.forms.AddPersonToContestForm attribute)

 	enable_linter_score (judge.forms.NewContestForm attribute)

 	(judge.models.Contest attribute)

 	enable_poster_score (judge.forms.NewContestForm attribute)

 	(judge.models.Contest attribute)

F

 	
 	file_exts (judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	
 	file_type (judge.forms.NewSubmissionForm attribute)

 	(judge.models.Submission attribute)

 	final_score (judge.models.Submission attribute)

G

 	
 	get_comments() (in module judge.handler)

 	get_csv() (in module judge.handler)

 	get_leaderboard() (in module judge.handler)

 	get_participants() (in module judge.handler)

 	(in module judge.views)

 	get_people() (in module judge.views)

 	
 	get_personcontest_permission() (in module judge.handler)

 	get_personcontest_score() (in module judge.handler)

 	get_personproblem_permission() (in module judge.handler)

 	get_posters() (in module judge.handler)

 	(in module judge.views)

 	get_submission_status() (in module judge.handler)

 	get_submissions() (in module judge.handler)

H

 	
 	handler404() (in module judge.views)

 	
 	handler500() (in module judge.views)

 	hard_end_datetime (judge.models.Contest attribute)

I

 	
 	index() (in module judge.views)

 	input_file (judge.forms.AddTestCaseForm attribute)

 	input_format (judge.forms.EditProblemForm attribute)

 	(judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	
 	inputfile (judge.models.TestCase attribute)

 	is_public (judge.forms.NewContestForm attribute)

J

 	
 	
 judge.forms

 	module

 	
 judge.handler

 	module

 	
 	
 judge.models

 	module

 	
 judge.views

 	module

 	judge_score (judge.models.Submission attribute)

L

 	
 	linter_score (judge.models.Submission attribute)

M

 	
 	max_score (judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	memory_limit (judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	memory_taken (judge.models.SubmissionTestCase attribute)

 	
 	message (judge.models.SubmissionTestCase attribute)

 	
 module

 	judge.forms

 	judge.handler

 	judge.models

 	judge.views

N

 	
 	name (judge.forms.EditProblemForm attribute)

 	(judge.forms.NewProblemForm attribute)

 	(judge.models.Contest attribute)

 	(judge.models.Problem attribute)

 	new_contest() (in module judge.views)

 	
 	new_problem() (in module judge.views)

 	NewCommentForm (class in judge.forms)

 	NewContestForm (class in judge.forms)

 	NewProblemForm (class in judge.forms)

 	NewSubmissionForm (class in judge.forms)

O

 	
 	output_file (judge.forms.AddTestCaseForm attribute)

 	output_format (judge.forms.EditProblemForm attribute)

 	(judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	
 	outputfile (judge.models.TestCase attribute)

P

 	
 	participant (judge.models.Submission attribute)

 	participant_email (judge.forms.NewCommentForm attribute)

 	penalty (judge.forms.NewContestForm attribute)

 	(judge.models.Contest attribute)

 	Person (class in judge.models)

 	person (judge.models.Comment attribute)

 	(judge.models.ContestPerson attribute)

 	(judge.models.PersonProblemFinalScore attribute)

 	PersonProblemFinalScore (class in judge.models)

 	poster_score (judge.models.Submission attribute)

 	Problem (class in judge.models)

 	problem (judge.models.Comment attribute)

 	(judge.models.PersonProblemFinalScore attribute)

 	(judge.models.Submission attribute)

 	(judge.models.TestCase attribute)

 	
 	problem_compilation_script() (in module judge.views)

 	problem_default_script() (in module judge.views)

 	problem_detail() (in module judge.views)

 	problem_starting_code() (in module judge.views)

 	problem_submissions() (in module judge.views)

 	problem_test_script() (in module judge.views)

 	process_comment() (in module judge.handler)

 	process_contest() (in module judge.handler)

 	process_person() (in module judge.handler)

 	process_problem() (in module judge.handler)

 	process_submission() (in module judge.handler)

 	process_testcase() (in module judge.handler)

 	public (judge.models.Contest attribute)

 	(judge.models.TestCase attribute)

R

 	
 	rank (judge.models.Person attribute)

 	
 	role (judge.models.ContestPerson attribute)

S

 	
 	score (judge.forms.AddPosterScoreForm attribute)

 	(judge.models.PersonProblemFinalScore attribute)

 	soft_end_datetime (judge.models.Contest attribute)

 	start_datetime (judge.models.Contest attribute)

 	starting_code (judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	statement (judge.forms.EditProblemForm attribute)

 	(judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	
 	Submission (class in judge.models)

 	submission (judge.models.SubmissionTestCase attribute)

 	submission_detail() (in module judge.views)

 	submission_download() (in module judge.views)

 	submission_file (judge.forms.NewSubmissionForm attribute)

 	(judge.models.Submission attribute)

 	SubmissionTestCase (class in judge.models)

T

 	
 	test_script (judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	test_type (judge.forms.AddTestCaseForm attribute)

 	TestCase (class in judge.models)

 	testcase (judge.models.SubmissionTestCase attribute)

 	
 	time_limit (judge.forms.NewProblemForm attribute)

 	(judge.models.Problem attribute)

 	time_taken (judge.models.SubmissionTestCase attribute)

 	timestamp (judge.models.Comment attribute)

 	(judge.models.Submission attribute)

U

 	
 	update_leaderboard() (in module judge.handler)

 	update_poster_score() (in module judge.handler)

 	
 	update_problem() (in module judge.handler)

 	UpdateContestForm (class in judge.forms)

V

 	
 	verdict (judge.models.SubmissionTestCase attribute)

 _images/problem-edit-delete.png
AUTOJUDGE HiVishwak S -

Document-correctly ﬂ

_images/problem-form.gif
AUTOJUDGE

Home / Contest 1 / New Problen

New Problem

Code:

Statement:

B I %"«

Hi Vishwak S CALCC

_images/new-problem-contest.png
AUTOJUDGE Hi Vishwak S @ LOGouT

test 1

Home / Cc

1 [Starts at July 24, 2019, noon
Submissions penalized after July 25, 2019,

ADD PROBLEM [l DOWNLOAD SCORES [l SEE POSTERS noon
Ends at July 26, 2019, noon
SEE PARTICIPANTS [l UPDATE DATES

No problems posted yet.

DELETE CONTEST

_images/poster-view.png
AUTOJUDGE Hi Vishwak S ® LOGOoUT

Home / Contest 1 / Posters

posters
cs15btech11043@iith.ac.in ﬂ

_static/file.png

_images/problem-test-case.gif
AUTOJUDGE

Hivishwaks [IECEECEEEE

Home / Contest 1 / New Probler

New Problem

Code:

Statement:

BI ®»

_static/minus.png

_static/plus.png

_images/contest-form.gif
AUTOJUDGE Hi Vishwak S CALCCC L

Home / New Contest

New Contest

Contest name:

Start Date:

Soft End Date for contest:

_images/log-in.png
AUTOJUDGE +) LOGIN

Contests

No active contests for the time being. Create a new contest or check later.

_images/contest-created.png
AUTOJUDGE HiVishwak S -

Contests

C1 PRIVATE| POSTER

_images/contest-detail-click.gif
AUTOJUDGE Hi Vishwak S & LOGOoUT

Contests

A AT o

Go to contest page

_images/new-contest-dashboard.png
AUTOJUDGE HiVishwak S -

Contests

No active contests for the time being. Create a new contest or check later.

nav.xhtml

 Table of Contents

 		
 Welcome to autojudge’s documentation!

 		
 The autojudge “Install and Use” Reference

 		
 Installing autojudge

 		
 Phase 1 : Get autojudge and set up your environment

 		
 Phase 2 : Run autojudge

 		
 User Manual for autojudge

 		
 Some important abstractions / terminology used in autojudge

 		
 Hands-on with autojudge

 		
 The autojudge API Reference

 		
 Models and Database Schema

 		
 Base Models

 		
 Derived Models

 		
 Forms and input pre-processing

 		
 Creation forms

 		
 Extension forms

 		
 Updation forms

 		
 Deletion forms

 		
 Views and page rendering

 		
 Default Views

 		
 Creation Views

 		
 Modification Views

 		
 Detail Views

 		
 Deletion Views

 		
 Downloading Views

 		
 Handlers and database management

 		
 Process Functions

 		
 Addition Functions

 		
 Update Functions

 		
 Getter Functions

 		
 Deletion Functions

